
	
Complete	Dynamic	Multi-cloud	Application	Management	

	

	

	

Project	no.	644925	

Innovation	Action		

Co-funded	by	the	Horizon	2020	Framework	Programme	of	the	European	Union		

	

Call	identifier:		H2020-ICT-2014-1	

Topic:		ICT-07-2014	–	Advanced	Cloud	Infrastructures	and	Services		

Start	date	of	project:			January	1st,	2015	(36	months	duration)	

	

Deliverable	D6.4	

Summary	of	Provided	Brokering,	Deployment,	and	
Management	Features	

Due	date:	 30/09/2017	

Submission	date:	 27/10/2017	

Deliverable	leader:	 TUB	

Editors	list:	 Dirk	Thatmann	(TUB),	C.	Loomis	(SixSq)	

	

	Dissemination	Level		
	 	 PU:	 Public	
	 	 PP:	 Restricted	to	other	programme	participants	(including	the	Commission	Services)	
	 	 RE:	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission	Services)	
	 	 CO:	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission	Services)	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	2	of	36	

List	of	Contributors		

Participant Short Name Contributor

Interoute S.P.A. IRT Domenico Gallico

SixSq Sàrl SIXSQ C. Loomis, K. Skaburskas, L. Schaub, K. Basbous

QSC AG QSC

Technische Universitaet Berlin TUB Dirk Thatmann, Mathias Slawik

Fundacio Privada I2CAT,
Internet I Innovacio Digital A Catalunya

I2CAT

Universiteit Van Amsterdam UVA Alexéy Ilyushkin

Centre National De La Recherche
Scientifique

CNRS

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	3	of	36	

Change	history	

Version Date Partners Description/Comments

0.0 13/09/2017 SixSq Table of contents

0.5 19/10/2017 SixSq Initial draft for use case input and feedback.

0.6 23/10/2017 TUB Feedback on initial draft.

0.9 24/10/2017 SixSq Final draft for internal review.

1.0 27/10/2017 SixSq Final document.

1.1 02/11/2017 SixSq Fix missing EDL17 reference.

	 	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	4	of	36	

Table	of	Contents	

List	of	Contributors	..	2	

Change	history	..	3	

List	of	Tables	...	5	

List	of	Figures	..	6	

Executive	Summary	...	7	

1.	 Introduction	..	8	

2.	 Application	Curation	...	9	

3.	 Authentication	and	Authorization	..	11	
3.1.	Authentication	Methods	...	11	
3.2.	Access	Control	...	12	

4.	 Cloud	Application	Deployment	and	Management	..	14	
4.1.	 Service	Catalog	...	14	
4.2.	Deployment	Engine	...	14	
4.3.	Application	Scalability	..	15	
4.3.1.	 Riemann	Scaling	..	15	
4.3.2.	 Pegasus	Scaling	...	16	

4.4.	Multi-Cloud	Support	...	17	
4.5.	 Features	..	18	

5.	Monitoring	...	20	

6.	 Scalability,	Reliability,	and	Usability	...	22	

7.	 Summary	...	23	

References	...	25	

Glossary	...	27	

Appendix	A	 Requirements	...	28	
	

	 	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	5	of	36	

List	of	Tables	

Table	1:	SlipStream	Cloud	Connectors	..	18	
Table	2:	Nuvla	Cloud	Service	Providers	...	18	
Table	3:	Summary	of	Available	and	Planned	Features	..	24	
Table	4:	Implementation	Status	of	Requirements	..	28	
Table	5:	Collected	Requirements	..	29	
	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	6	of	36	

List	of	Figures	

Figure	1:	SlipStream	(Nuvla)	Authentication	Services	...	12	
Figure	2:	Pegasus	Autoscaling	with	SlipStream	...	17	
Figure	3:	Old	Interface	for	Cloud	Usage	Information	..	21	

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	7	of	36	

Executive	Summary	

At	the	beginning	of	the	CYCLONE	project,	SlipStream	was	already	capable	of	managing	the	basic	lifecycle	of	
cloud	 applications.	 	With	 input	 and	 feedback	 from	 the	 application	 developers	 of	 the	 targeted	 use	 cases	
(WP3),	potential	improvements	were	identified	and	requirements	defined.		

Over	 the	 last	 three	 years,	 the	 project	 has	 significantly	 enhanced	 the	 brokering,	 deployment	 and	
management	features	for	multi-cloud	applications	by	extending	SlipStream.	The	use	cases	from	WP3	have	
provided	 guidance	 on	 the	 features	 to	 be	 implemented	 and	 have	 validated	 those	 features	 with	 Nuvla,	
SixSq’s	commercial	SlipStream	service	that	is	a	component	of	CYCLONE’s	testbed.	The	fact	that	Nuvla	was	
updated	 fortnightly	 with	 CYCLONE	 updates	 is	 further	 evidence	 that	 the	 developed	 features	 are	 of	
production	quality	and	useful	to	users	from	diverse	domains.	

This	document	summarizes	the	brokering,	deployment,	and	management	features	that	are	available	from	
SlipStream,	 the	 core	 service	 within	 the	 CYCLONE	 project	 for	 cloud	 application	 management.	 The	
implemented	features	include:	

• Application	 curation:	 Portability,	 Automated	 Deployment,	 Component	 Coordination,	 Application	
Parameterization,	Shared	Applications,	and	Stock	Components.	

• Authentication	and	authorization:	Authentication	by	Username/Password,	API	Key/Secret,	GitHub,	
eduGAIN,	Elixir	AAI;	Authorization	by	User	or	by	Role/Group;	and	Role/Group	definition.	

• Deployment	 and	 management:	 Offer-Based	 Provisioning,	 Multi-Cloud	 Deployments,	 Horizontal	
Scaling,	Vertical	Scaling,	Ranking	by	Cost,	and	Policy	Constraints.	

• Monitoring:	Benchmarking,	Current	Usage,	Historical	Usage,	and	Quota.	

• Scalability,	reliability,	and	usability:	Python	API,	Libcloud	Driver,	and	Clojure(Script)	API	in	addition	
to	a	general	move	towards	micro-services	to	improve	the	scalability	and	reliability.	

Overall,	 there	were	56	requirements	of	which	33	 (59%)	were	 fully	 implemented,	11	 (20%)	remain	on	the	
short-term	roadmap,	12	(21%)	will	not	be	implemented	for	various	reasons.	

As	 SlipStream	 is	 a	 commercial	 solution	 at	 the	 core	 of	 SixSq’s	 portfolio,	 the	 evolution	 of	 SlipStream	will	
continue	after	the	end	of	CYCLONE.		As	mentioned	above,	11	of	the	requirements	remain	on	the	short-term	
SlipStream	roadmap	and	will	likely	be	implemented	within	the	next	six	months.	These	include:	

• Application	curation:	Services,	Hierarchical	Applications,	Module	Isolation,	and	GitHub	Integration.	

• Authentication	and	authorization:	Completion	of	CIMI	Migration	and	Resource	Segmentation.	

• Deployment	and	management:	Extended	Pre-Filtering,	User-Specified	Ranking,	Scaling	with	Offers,	
Scaling	through	the	UI,	and	Dynamic	Application	Topology.		

• Monitoring:	Extended	Resource	Coverage	and	User-Defined	Quotas.	

• Scalability,	reliability,	and	usability:	Continued	Migration	to	Micro-Services.	

One	 large	area	 that	 remains	 to	be	covered	 is	 the	 inclusion	of	data	management.	Experiments	have	been	
conducted	 with	 the	 European	 Space	 Agency	 to	 see	 how	 data	 resources	 can	 be	 defined	 in	 the	 Service	
Catalog	and	with	HNSciCloud	to	understand	how	to	integrate	scientific	data	management	services,	 in	this	
case	Onedata	from	the	Indigo	Data	Grid	project.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	8	of	36	

1. Introduction	

At	the	beginning	of	the	CYCLONE	project,	SlipStream	was	already	capable	of	managing	the	basic	lifecycle	of	
cloud	 applications.	 	With	 input	 and	 feedback	 from	 the	 application	 developers	 of	 the	 targeted	 use	 cases	
(WP3),	a	number	of	improvements	were	identified.		Previous	documents	have	described	the	requirements	
associated	with	those	improvements	and	plans	for	implementation.	

The	features	are	organized	into	the	following	categories:	

• Application	curation,	

• Authentication	and	authorization:		

• Deployment	and	management,	

• Monitoring,	and	

• Scalability,	reliability,	and	usability.	

A	short	summary	of	the	features	is	provided	at	the	end	of	the	document.		The	appendix	contains	detailed	
commentary	on	individual	requirements	defined	in	the	previous	three	deliverables	of	WP6.	

The	feedback	from	the	use	cases	 (WP3)	and	developments	 from	the	other	CYCLONE	work	packages	have	
been	 instrumental	 in	 defining	 the	 direction	 of	 the	 CYCLONE	 developments,	 prioritizing	 changes,	 and	
validating	those	that	have	been	implemented.	Details	can	be	found	in	the	WP3	documents.	Although	some	
requested	 features	 have	 not	 yet	 been	 implemented,	 they	 are,	 in	 most	 cases,	 part	 of	 the	 SlipStream	
roadmap	that	will	drive	the	evolution	of	SlipStream	through	the	remainder	of	the	project	and	afterwards.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	9	of	36	

2. Application	Curation	

Running	 applications	on	 a	 cloud	 system	 requires	management	of	 virtual	machine	 images.	 In	many	 cloud	
management	 systems,	 users	 generate	 these	 machine	 image	 files	 and	 then	 upload	 them	 to	 their	 cloud	
service	provider	(CSP).	The	management	overhead	associated	with	the	transport,	conversion,	and	evolution	
of	these	images	discourages	the	use	of	multiple	CSPs.		

SlipStream	takes	a	different	approach:	users	specify	the	resource	requirements,	placement	constraints,	and	
the	software	installation	and	configuration	procedures.	SlipStream	then	uses	this	information	to	transform	
existing,	minimal	images	(optimized	for	each	cloud	provider)	into	the	customized	VM	requested	by	the	user.	
This	has	two	advantages:	1)	the	image	descriptions	are	portable	and	can	be	used	for	any	cloud	supported	
by	SlipStream	and	2)	all	knowledge	about	the	application	is	captured	and	managed.		

On	clouds	that	support	customized	user	images,	binary	image	files	can	be	produced	(“built”)	by	SlipStream	
to	reduce	the	startup	latency.	Users	must	explicitly	request	the	build	of	these	binary	image	files,	but	once	
produced,	SlipStream	will	use	them	automatically.	This	maintains	cloud	portability	while	allowing	users	to	
shorten	start	up	latencies	for	particular	CSPs.		

SlipStream	provides	a	“workspace”	 in	which	users	manage	their	application	and	component	descriptions.	
These	descriptions	can	be	shared	with	other	users.	 In	addition,	 system	administrators	can	publish	vetted	
applications	into	an	“App	Store”	to	make	them	visible	to	all	SlipStream	users.	Applications	in	the	App	Store	
can	be	found	easily	and	launched	with	a	“single	click”.		

Within	the	component	definitions,	the	resource	requirement	and	placement	constraints	directly	affect	the	
CSPs	that	are	chosen.	The	placement	constraints	can	include	security,	location,	availability,	and	other	non-
functional	requirements	to	support	the	definition	and	enforcement	of	SLAs.	

The	following	subsections	highlight	features	that	are	commonly	used	by	CYCLONE	project	participants	and	
within	the	ported	use	cases.	They	also	identify	points	where	the	platform	could	be	further	improved;	this	
feedback	helps	define	the	roadmap	for	SlipStream	during	the	remainder	of	the	project	and	afterwards.	

Implemented	features	commonly	used	for	CYCLONE	platform	components	and	use	cases:	

• Portability.	 All	 the	 CYCLONE	 components	 have	 been	 designed	 for	 a	 multi-cloud	 (hybrid	 cloud)	
context.	 	 Consequently,	 all	 these	 components	 make	 use	 of	 the	 cloud	 portability	 features	 of	
SlipStream.	 The	 use	 cases	 similarly	 take	 advantage	 of	 cloud	 portability,	 with	 most	 use	 cases	
demonstrated	on	multiple	cloud	infrastructures.	

• Automated	Deployment.	Users	 can	easily	define	 complex	applications	 containing	any	number	of	
components.	 SlipStream	 fully	 automates	 the	 deployment	 of	 such	 applications,	 allowing	 users	 to	
concentrate	 on	 managing	 the	 application	 as	 a	 whole,	 rather	 than	 the	 numerous	 individual	
machines.	 	 This	 feature	 saves	 time	 by	 freeing	 people	 from	 the	 tedious	 details	 of	 a	 complex	
deployment	but	also	by	avoiding	mistakes	that	occur	with	manual	deployments.	

• Component	 Coordination.	 In	 any	 complex	 application,	 there	 are	 dependencies	 between	 the	
various	components.	For	example,	 in	a	 typical	3-tiered	web	application	 the	business	 logic	cannot	
start	 before	 the	 underlying	 database	 is	 ready,	 and	 of	 course,	 the	 business	 logic	must	 know	 the	
endpoints	 of	 the	 database.	 SlipStream	 provides	 a	 simple	 mechanism	 for	 passing	 information	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	10	of	36	

between	the	components	and	critically,	 for	waiting	on	required	 information	to	be	published.	This	
feature	is	used	for	all	component	and	application	definitions.		

• Application	 Parameterization.	 The	 same	 feature	 that	 allows	 coordination	 between	 application	
components	 also	 allows	 the	 application	 to	 take	 values	 for	 input	 parameters	 from	 the	 person	
deploying	the	application,	promoting	generalization	of	applications	and	reuse.	This	feature	 is	also	
used	 by	 application	 developers	 to	 feed	 information	 (e.g.	 randomized	 passwords	 or	 service	
endpoints)	back	to	the	application	owner.	All	the	CYCLONE	components	use	this	parameterization	
to	 provide	 reusable	 components.	 Most	 of	 the	 use	 cases	 also	 use	 this	 feature	 to	 allow	 for	
customized	deployments,	for	example,	varying	the	input	data	for	a	scientific	analysis.	

• Sharing	 Applications.	 Having	 the	 ability	 to	 reuse	 component	 definitions	 and	 parameterize	
applications	is	of	 limited	use	unless	they	can	also	be	shared	with	others.	On	the	developer’s	side,	
this	means	sharing	 the	work	of	building	and	maintaining	an	application	between	team	members.	
On	 the	user’s	 side,	 this	means	being	able	 to	publish	applications	 for	use	by	other	people	on	 the	
platform.	 The	 SlipStream	 access	 control	 allows	 the	 developer	 to	 define	 the	 visibility	 of	 an	
application	by	others.		Vetted	applications	can	also	be	published	in	the	App	Store.	All	the	CYCLONE	
components	are	visible	 to	all	users	of	 the	platform.	The	applications	 for	use	cases	are	commonly	
shared	between	a	team	of	developers	and	a	targeted	set	of	users.	

• Stock	 Components.	Developers	 can	 take	advantage	of	 a	 large	number	of	 stock	 components	 that	
are	 maintained	 by	 SixSq	 and	 published	 in	 the	 App	 Store.	 	 These	 range	 from	minimal	 operating	
system	images	to	scalable	container	infrastructures	such	as	Kubernetes	or	Docker	Swarm.	CYCLONE	
has	taken	the	same	approach	with	most	of	the	networking,	security,	and	AAI	components	available	
as	“bricks”	to	incorporate	more	complex	applications.				

Features	 identified	 through	 the	 CYCLONE	 activities	 that	 would	 further	 enhance	 the	 utility	 of	 the	 cloud	
application	management	platform:			

• Services.	Although	many	applications	have	a	single	lifecycle	and	benefit	directly	from	SlipStream’s	
automated	 deployments,	 many	 applications	 have	 subsystems	 with	 independent	 lifecycles.	 	 For	
example,	 operators	 of	 a	 3-tiered	web	 application	may	want	 to	 operate	 the	 database	 separately	
from	the	business	logic.	Nonetheless,	they	would	still	like	to	benefit	from	SlipStream’s	coordination	
infrastructure	to	allow	information	(e.g.	endpoints	or	access	credentials)	to	be	passed	between	the	
different	“service”	deployments.	

• Hierarchical	Applications.	Allowing	an	operator	 to	decide	at	deployment	time	whether	 to	deploy	
an	application	in	its	entirety	or	to	deploy	it	as	a	set	of	cooperating	services	would	provide	further	
flexibility.	 To	 support	 this,	 it	 would	 be	 useful	 to	 be	 able	 to	 define	 SlipStream	 applications	
hierarchically,	allowing	application	definitions	to	incorporate	other	applications	directly.	(Currently	
applications	can	only	incorporate	single	machine	components.)	

• Module	 Isolation.	The	SlipStream	workspace	has	a	root	 that	 is	shared	by	all	users	of	 the	system.	
Although	this	makes	sharing	a	bit	easier,	 it	raises	the	possibility	of	conflicts	with	top-level	project	
names	 and	 “pollutes”	 a	 user’s	 workspace	 with	 the	 visible	 projects	 of	 others.	 Removing	 this	
common	 root	 while	 providing	 the	 ability	 to	 search	 for	 shared	 components	 would	 improve	 the	
usability	of	the	platform.	

• GitHub	 Integration.	SlipStream	allows	component	and	application	definitions	to	be	managed	and	
versioned	directly	within	the	platform.	However,	many	developers	would	prefer	instead	to	be	able	
to	manage	 their	 SlipStream	 recipes	 next	 to	 their	 source	 code.	 	 Allowing	 SlipStream	 to	 integrate	
directly	with	GitHub	 (or	any	other	popular	 source	code	management	system)	would	 improve	 the	
usability	of	the	platform	and	appeal	to	a	larger	group	of	developers.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	11	of	36	

3. Authentication	and	Authorization	

When	CYCLONE	started,	the	Authentication	and	Authorization	Infrastructure	(AAI)	for	SlipStream	was	basic.	
Only	authentication	with	usernames	and	passwords	defined	within	 the	 internal	database	was	supported.		
SlipStream	 access	 control	 was	 limited	 to	 Unix-like	 permissions,	 allowing	 rights	 to	 be	 defined	 for	 owner,	
group	(as	an	explicit	list	of	users),	and	others.	

The	SlipStream	AAI	has	 improved	considerably	over	 the	 lifetime	of	 the	project,	expanding	 the	 supported	
authentication	 sources	 based	on	work	 from	 the	 security	work	 package	 (WP4)	 and	 implementing	 a	more	
flexible	resource	authorization	based	on	a	generic	Access	Control	List	(ACL).		

3.1. Authentication	Methods	

To	 allow	new	authentication	methods	 to	 be	 added	more	 easily,	 the	 SlipStream	authentication	 code	was	
significantly	refactored.	Adding	direct	support	for	new	authentication	methods	now	only	requires	adding	a	
couple	 resources	 compatible	 with	 the	 Cloud	 Infrastructure	 Management	 Interface	 (CIMI)	 from	 DMTF	
[CIMI16]	 and	 a	 function	 to	 handle	 the	 interactions	 with	 the	 (external	 or	 internal)	 service	 that	 provide	
authentication	information.	Figure	1	shows	the	internal	and	external	authentication	methods	that	are	now	
supported	by	SlipStream	(Nuvla).		

The	 refactored	 authentication	 code	 contains	 “plugins”	 for	 handling	 the	 GitHub	 (OAuth2)	 [OAUTH]	 and	
OpenID	 Connect	 (OIDC)	 [OIDC]	 protocols	 for	 external	 authentication.	 The	 project’s	 Keycloak	 server,	
allowing	access	to	the	eduGAIN	identity	federation	through	the	German	NREN	DFN,	is	accessed	through	the	
OIDC	 protocol	 by	 SlipStream.	 As	 Keycloak	 supports	 a	wide	 variety	 of	 identity	 providers,	 sources	 such	 as	
LDAP,	Twitter,	Facebook,	etc.	can	be	supported	via	straightforward	configuration	changes.	

SixSq	 has	 deployed	 and	 certified	 a	 second	 Keycloak	 server	 to	 support	 the	 Helix	 Nebula	 Science	 Cloud	
(HNSciCloud)	 project.	 This	 second	 Keycloak	 server	 allows	 access	 to	 the	 eduGAIN	 [EDUGAIN]	 identity	
federation	through	SWITCH,	the	Swiss	NREN.	In	addition,	access	to	the	identity	federation	for	Elixir	[ELIXIR],	
a	 European	 flagship	 project	 for	 bioinformatics,	 has	 been	 configured.	 This	 deployment	 is	 an	 excellent	
validation	of	the	work	done	on	Keycloak	within	WP4,	showing	the	generality	of	the	service	and	its	utility	for	
large	scientific	collaborations.	

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	12	of	36	

	
Figure	1:	SlipStream	(Nuvla)	Authentication	Services	

	

SlipStream	 still	 supports	 authentication	 via	 usernames	 and	 passwords	 stored	 in	 SlipStream’s	 internal	
database.	 In	 addition,	 SlipStream	 also	 allows	 users	 to	 generate	 separate	 API	 key/secret	 pairs.	 The	 API	
key/secret	pairs	can	optionally	be	created	with	an	expiration	date;	an	API	key/secret	pair	can	be	revoked	at	
any	 time.	 A	 different	 API	 key/secret	 pair	 can	 be	 generated	 for	 each	 client,	 allowing	 more	 fine-grained	
control	over	authorization	for	clients	accessing	SlipStream	via	the	command	line	or	API.	

In	summary,	the	authentication	methods	that	are	supported	are:	

• Username/Password.	Simple	credentials	tied	to	a	user	account	and	stored	in	SlipStream’s	internal	
database.	

• API	Key/Secret.	Credentials	that	can	be	generated	by	users	to	allow	clients	to	access	SlipStream	via	
the	command	line	or	API.	The	pairs	can	be	revoked	independently	of	one	another;	they	can	also	be	
created	with	an	expiration	date.	

• GitHub	(OAuth2).	Direct	support	for	authentication	via	the	OAuth2	protocol,	configured	on	Nuvla	
for	GitHub.	

• eduGAIN	(OIDC).	Support	for	the	eduGAIN	identity	federation	via	the	CYCLONE	and	SixSq	Keycloak	
servers.	This	allows	authentication	through	the	identity	providers	of	most	academic	institutions	in	
Europe.	

• Elixir	(SAML2).	Support	for	the	Elixir	AAI	federation	via	the	SixSq	Keycloak	server.	
• Group/Role	Definition.	When	using	external	authentication	methods	through	the	Keycloak	server,	

it	 is	possible	to	define	groups	and	roles	and	assign	these	to	users.	This	allows	collaborations	that	
span	 multiple	 institutes	 to	 define	 common	 attributes	 independently	 of	 each	 institute’s	 identity	
provider.	

The	above	features	cover	completely	the	defined	use	cases	and	there	are	no	authentication	enhancements	
on	 the	 current	 SlipStream	 roadmap.	However,	 there	have	been	 some	 tentative	 requests	 for	 direct	 LDAP	
support	to	allow	COmanage	(from	the	Internet2	initiative)	to	be	used	instead	of	Keycloak.	

3.2. Access	Control	

As	 described	 in	 previous	 deliverables,	 the	 SlipStream	 code	 base	 is	 migrating	 from	 one	 that	 provides	 a	
custom	 API	 to	 one	 based	 on	 the	 CIMI	 standard.	 	 The	 authorization	 models	 for	 the	 two	 cases	 differ	
significantly.	

The	authorization	model	associated	with	resources	inside	the	“custom	API”	uses	Unix-like	semantics.	Users	
may	assign	a	limited	set	of	rights	to	the	“owner”,	“group”	and	“others”.	The	group	is	defined	as	an	explicit	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	13	of	36	

list	 of	 users.	 This	 model	 only	 recognizes	 one	 group	 and	 does	 not	 allow	 the	 rights	 to	 be	 assigned	 to	
externally	defined	groups	or	roles.	Although	there	is	some	limited	inheritance	of	groups,	group	definitions	
cannot	be	effectively	reused.	Overall,	 this	rigid	model	 is	too	 limited	to	provide	effective	authorization	for	
multi-institute	collaborations.	

The	authorization	model	for	the	CIMI-based	resources	is	much	more	flexible.		The	Access	Control	List	(ACL)	
for	a	resource	consists	of	an	owner	(which	may	be	a	user,	group,	or	role)	that	always	has	full	control	of	the	
resources	and	an	optional	list	of	rules.		A	rule	consists	of	a	principal	(user,	group,	or	role)	and	an	associated	
right.	 This	 is	 a	 significant	 improvement	 over	 the	 previous	 authorization	 model	 because	 rights	 can	 be	
associated	with	external	group	and	role	information.	One	intentional	limitation	of	the	implemented	ACL	is	
that	it	allows	only	positive	definition	of	rights,	that	is	rules	that	deny	certain	rights	are	not	supported.	This	
limitation	 allows	 fast	 evaluation	 of	 the	 ACL	 and	 allows	 pre-filtering	 within	 the	 database,	 ensuring	 good	
performance	and	scalability	of	the	SlipStream	service.	

The	 implementation	of	 the	ACLs	 is	 completely	 generic	 and	 is	 automatically	 added	 to	 a	 resource	when	 it	
migrates	 to	 the	 CIMI-based	 framework.	 Consequently,	 the	 features	 of	 the	 new	 authorization	model	 are	
visible	to	users	as	soon	as	a	resource	has	been	migrated.	The	resources	that	remain	to	be	migrated	are	the	
user,	deployment,	and	module	resources.		The	user	resource	is	currently	being	migrated	and	the	migration	
of	the	deployment	resource	is	on	the	short-term	roadmap.	

The	authorization	features	that	are	available	with	the	CIMI-based	framework	are:	

• Authorization	by	User.	Allows	the	rights	 for	a	resource	to	be	assigned	based	on	the	 identity	of	a	
user.	Different	rights	can	be	assigned	to	different	users.	

• Authorization	by	Role/Group.	Allows	 rights	 for	a	 resource	 to	be	associated	based	on	a	group	or	
role,	which	is	assigned	independently	of	the	ACL.	

The	following	features	related	to	authorization	appear	on	the	SlipStream	roadmap:	

• Complete	Migration.	Complete	the	migration	of	the	remaining	resources	(user,	deployment,	and	
module)	so	that	they	benefit	from	the	new	authorization	model.	

• Resource	 Segmentation.	 The	 ability	 to	 segment	 the	defined	 resources	 into	metadata,	 data,	 and	
ACL	and	control	the	authorization	separately	for	each	segment.	

The	resource	segmentation	will	be	implemented	as	a	richer	set	of	rights	that	can	be	assigned	to	users.	 In	
fact,	this	richer	set	of	rights	has	been	implemented	but	is	not	yet	applied	separately	to	the	three	segments	
of	a	resource.	

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	14	of	36	

4. Cloud	Application	Deployment	and	Management	

In	the	initial	SlipStream	deployment	model,	application	developers	had	to	specify	the	virtual	machine	size	
(“flavor”)	for	every	cloud	and	users	had	to	specify	the	target	cloud	directly.	This	deployment	model	works	
well	for	small	numbers	of	clouds	but	quickly	becomes	tedious	as	the	number	of	clouds	grows.		Moreover,	
this	model	does	not	allow	for	“special	offers”,	like	reserved	instances	or	spot	instances,	to	be	selected.	

Because	 of	 these	 limitations,	 a	 deployment	 model	 based	 on	 “Service	 Offers”	 was	 designed	 near	 the	
beginning	of	the	project.	The	 implementation	consists	of	a	Service	Catalog	and	an	enhanced	Deployment	
Engine.		In	addition,	the	application	scaling	process	has	been	enhanced.	

4.1. Service	Catalog	

The	 Service	 Catalog	 is	 a	 collection	 of	 resources	 to	 allow	 people	 to	 understand	 the	 offers	 available	 from	
cloud	 providers	 and	 to	 select	 offers	 appropriate	 for	 a	 given	 cloud	 applications.	 The	 Service	 Catalog	
resources	are:	

• Service	 Offer:	 The	 primary	 resource	 containing	 information	 about	 a	 specific	 offer	 from	 a	 cloud	
provider.	 	 For	 instance,	 this	may	 be	 an	 offer	 for	 a	 particular	 flavor	 of	 a	 virtual	machine	with	 an	
associated	price	and/or	quality	of	service.	

• Service	Benchmark:	A	secondary	 resource	 that	allows	any	user	 to	post	performance	or	 reliability	
information	about	cloud	resources.	This	is	primarily	intended	for	pre-filtering	and	ranking	of	cloud	
infrastructures.	

• Service	 Attribute:	 A	 human-readable	 description	 of	 a	 particular	 attribute	 that	 can	 appear	 in	 a	
Service	Offer.	This	primarily	documents	the	semantics	of	an	attribute.	

• Service	 Attribute	 Namespace:	 An	 association	 between	 an	 attribute	 prefix	 and	 URI.	 This	 is	 a	
technical	requirement	to	ensure	uniqueness	of	attributes.	

Together	these	resources	provide	a	“database”	that	can	be	queried	by	humans	and	machine	alike,	to	select	
appropriate	cloud	resources.	

4.2. Deployment	Engine	

The	deployment	procedure	consists	of	the	following	steps:	

1. Pre-filtering.	Selection	of	the	cloud	infrastructures	to	be	considered	for	the	deployment.		Remove	
from	consideration	offers	from	ineligible	clouds.	

2. Offer	 Filtering.	 Based	 on	 resource	 requirements	 and	 policy	 constraints	 (e.g.	 jurisdiction)	 for	 the	
application,	filter	those	that	do	not	meet	the	application	requirements.	

3. Ranking.	Based	on	a	ranking	algorithm,	order	the	eligible	offers	from	most	to	least	attractive.	

4. Selection.	Choose	the	service	offer	to	use	for	each	component	of	an	application.	This	can	either	be	
done	manually	by	the	user	or	automatically	based	on	the	ranking.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	15	of	36	

5. Provisioning.	Allocate	the	selected	resources	and	then	run	the	application’s	“recipes”	to	bring	the	
application	into	a	running	state.	

6. Scaling.	 As	 the	 load	on	 the	 application	 changes	 over	 time,	 scale	 the	 application	by	 changing	 the	
resources	 allocated	 to	 the	 application.	 When	 adding	 resources,	 the	 same	 resource	 selection	
procedure	should	be	used	as	for	the	initial	startup.	

7. Termination.	Stop	the	application	and	free	all	allocated	resources.	

Note	 that	 the	provisioning	 is	done	per-component,	 so	 that	a	multi-component	application	can	easily	use	
resources	from	multiple	clouds	in	the	same	application	deployment.	

This	new	deployment	model	has	been	progressively	implemented	over	the	course	of	the	project.	Currently	
the	SlipStream	deployment	engine	is	entirely	based	on	service	offers,	although	there	are	some	limitations	
at	the	various	stages	listed	above.		These	limitations	include:	

• Pre-filtering	is	limited	to	the	list	of	configured	clouds	for	a	given	user.	The	abilities	to	pre-filter	on	
cloud	performance	metrics	or	the	location	of	required	data	are	planned,	but	not	yet	implemented.	

• The	 ranking	 algorithm	 is	 limited	 to	 cost.	 The	 ability	 to	 allow	 users	 to	 define	 ranking	 algorithms	
based	on	other	criteria	is	planned.	

• The	 scaling	 of	 an	 application	 uses	 resources	 from	 the	 same	 cloud	 provider(s)	 that	 are	 currently	
used.	The	scaling	process	will	eventually	re-evaluate	the	offers	for	each	new	resource	allocation.	

These	limitations	will	be	removed	as	part	of	the	ongoing	SlipStream	development	roadmap.	

4.3. Application	Scalability	

The	 load	of	a	cloud	application	will	vary	over	time.	 	To	maintain	performance,	the	resources	allocated	to	
the	application	must	rise	and	fall	 in	tandem	with	the	load.	SlipStream	provides	a	mechanism	to	automate	
the	scaling	process.		

SlipStream	provides	both	horizontal	and	vertical	scaling	through	the	API.	The	primary	 limitations	are	that	
the	 topology	 of	 an	 application	 cannot	 be	 changed	 at	 run	 time	 and	 that	 the	 scaling	 actions	 cannot	 be	
triggered	through	the	browser	interface.	

SixSq	provides	documentation	for	how	to	trigger	scaling	through	the	SlipStream	API.	SixSq	also	provides	an	
example	application	that	demonstrates	“auto-scaling”	based	on	application-defined	metrics.	UvA	has	also	
worked	to	show	that	the	mechanisms	are	general	enough	to	be	adapted	to	different	scaling	algorithms.		

4.3.1. Riemann	Scaling	

The	 example	 auto-scaling	 application	 from	 SixSq	 bases	 its	 implementation	 on	 the	 Riemann	 plugin	 of	
collectd	and	a	 custom	publisher	written	 in	Python	 conforming	 to	 the	Riemann	client	 library	API.	 The	 full	
details	have	been	described	in	Sections	4.7	and	4.8	of	a	previous	deliverable	[D6.3]	and	are	not	repeated	
here.	

The	example	auto-scaling	application	contains	the	following	components:		

• webapp:	 a	 stateless	 web	 application	 that	 takes	 requests,	 synchronously	 performs	 a	 moderately	
intensive	computation	(calculating	π	up	to	100	digits),	and	returns	the	result,	

• nginx:	a	load	balancer	based	on	the	Nginx	[NGIN16]	web	server	that	distributes	client	requests	to	
the	set	of	stateless	web	servers,	

• client:	a	test	client	based	on	Locust	[LOC16]	that	simulates	a	varying	number	of	clients,	and	�	
• autoscaler:	Standard	SlipStream	autoscaler	component	that	makes	scaling	decisions.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	16	of	36	

The	 application	 can	 be	 found	 in	 the	 AppStore	 on	Nuvla;	 its	 source	 code	 is	 in	 the	 “client-nginx-webapp”	
module	in	the	GitHub	repository.		The	application	changes	the	number	of	“webapp”	machines	based	on	the	
observed	response	time	for	requests;	the	“autoscaler”	component	interacts	with	SlipStream	to	trigger	the	
addition	or	removal	of	“webapp”	machines.

4.3.2. Pegasus	Scaling	

To	 ensure	 that	 the	 scaling	 mechanisms	 in	 SlipStream	 are	 independent	 of	 technologies	 chosen	 in	 the	
example	 autoscaling	 application,	 UvA	 implemented	 an	 elastic	 deployment	 of	 the	 Pegasus	 workflow	
management	 system	 [PEG17]	 in	 SlipStream,	 called	 ElasticPegasus.	 The	 provided	 setup	 allows	 to	 execute	
complex	 scientific	 workflows	 in	 an	 elastic	 environment	 equipped	 with	 an	 autoscaler,	 which	 permits	
adjusting	the	number	of	allocated	resources	(thus,	horizontal	scaling)	to	meet	SLAs	automatically.	

The	Pegasus	workflow	management	system	is	based	on	HTCondor	[CON17]	workload	management	system	
for	 compute-intensive	 jobs.	 Pegasus	 facilitates	 the	 execution	 of	 complex	 (scientific)	 workflows	 in	
distributed	 computing	 environments.	 There	 are	 many	 popular	 workflow	 types	 which	 are	 used	 in	 many	
different	 fields	 from	 astronomy	 to	 bioinformatics	 [EDL17].	 Pegasus	 uses	 HTCondor	 to	 transfer	 the	 files	
using	 either	 a	 shared	 file	 system	or	 a	 so-called	 condorio	mode	 in	which	HTCondor	 is	 responsible	 for	 file	
transfers	 between	 the	 tasks/computing	 nodes.	 In	 ElasticPegasus,	 the	 condorio	mode	 is	 used	 because	 it	
simplifies	the	setup,	avoiding	the	installation	and	configuration	of	a	network	file	system.	

For	ElasticPegasus,	an	elastic	SlipStream	application	with	a	single	head	node	and	a	set	of	worker	nodes	is	
used.	The	whole	setup	runs	an	additional	single	orchestrator	VM,	automatically	instantiated	by	SlipStream	
during	the	deployment	of	the	application.	The	orchestrator	is	needed	to	make	the	deployment	scalable	and	
this	is	a	requirement	of	the	SlipStream	platform.	

The	 head	 node	 acts	 as	 an	 HTCondor	 Central	 Manager,	 which	 maintains	 the	 HTCondor	 pool	 and	 it	 is	
responsible	 for	 job	 submissions.	 The	 worker	 VMs	 only	 execute	 HTCondor	 jobs.	 Using	 the	 component	
parameter	mapping,	SlipStream	guarantees	that	the	head	VM	boots	before	all	the	other	VMs	and	that	the	
IP	address	of	the	head	VM	is	provided	to	all	the	worker	VMs.	Worker	VMs	automatically	join	the	HTCondor	
pool	using	the	provided	IP	address	of	the	head	VM.	

Pegasus	 is	 only	 installed	 on	 the	 head	 VM,	 where	 it	 provides	 commands	 to	 generate	 workflow	 Directed	
Acyclic	 Graphs	 (DAGs),	 plan	 the	 workflow	 execution,	 and	 to	 submit	 new	 workflows.	 It	 also	 allows	
monitoring	the	execution	of	workflows,	collects	results,	and	runs	a	web	interface	to	monitor	the	progress	
of	the	submitted	workflows.	

The	 head	 VM	 also	 runs	 a	 small	 provisioning	 controller	 daemon	 and	 a	 RESTful	 autoscaling	 service.	 The	
provisioning	 controller	 periodically	 (by	 default	 every	 30	 seconds)	 invokes	 the	 autoscaler.	 The	 RESTful	
interface	 requires	 two	 input	 arguments:	 current	 demand	 and	 service	 rate,	 and	 returns	 as	 a	 prediction	 a	
number	of	VMs	to	provision	or	release.	The	prediction	 is	used	by	the	provisioning	controller	 to	start	and	
stop	 VMs.	 We	 specify	 current	 demand	 as	 the	 number	 of	 currently	 eligible	 (with	 satisfied	 precedence	
constraints)	 and	 running	workflow	 tasks	of	all	 the	workflows	 in	 the	 system.	To	calculate	 the	 service	 rate	
parameter,	the	provisioning	controller,	measures	how	many	workflow	tasks	are	processed	per	autoscaling	
interval	by	a	single	VM.	The	provisioning	controller	is	also	responsible	for	issuing	provisioning	and	release	
commands	 to	 SlipStream.	 For	 that,	 it	 keeps	 track	 on	 the	 VM	 load	 information	 and	 decides	 which	 VMs	
should	be	stopped.	It	only	stops	idle	VMs,	starting	with	VMs	that	have	been	idle	the	longest.		

ElasticPegasus	has	two	autoscaling	policies:	React	and	Adapt	[ILY17].	Both	policies	are	workflow-agnostic,	
which	means	that	they	can	also	be	used	to	control	other	application	types.	

• React:	 Chieu	 et	 al.	 [CHI09]	 presented	 a	 dynamic	 scaling	 algorithm	 for	 automated	provisioning	of	
VM	 resources	 based	 on	 the	 number	 of	 concurrent	 users,	 the	 number	 of	 active	 connections,	 the	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	17	of	36	

number	 of	 requests	 per	 second,	 and	 the	 average	 response	 time	per	 request.	 The	 algorithm	 first	
determines	 the	 current	 web	 application	 instances	 with	 active	 sessions	 above	 or	 below	 a	 given	
utilization.	If	the	number	of	overloaded	instances	is	greater	than	a	predefined	threshold,	new	web	
application	 instances	 are	 provisioned,	 started,	 and	 then	 added	 to	 the	 front-end	 load-balancer.	 If	
two	 instances	 are	 underutilized	 with	 at	 least	 one	 instance	 having	 no	 active	 session,	 the	 idle	
instance	 is	 removed	 from	 the	 load-balancer	 and	 shutdown	 from	 the	 system.	 In	 each	 case,	 the	
technique	reacts	to	the	workload	change.	

• Adapt:	Ali-Eldin	et	al.	[ALI12]	propose	an	autonomous	elasticity	controller	that	changes	the	number	
of	VMs	allocated	to	a	service	based	on	both	monitored	load	changes	and	predictions	of	future	load.	
The	predictions	are	based	on	 the	 rate	of	change	of	 the	 request	arrival	 rate,	 i.e.,	 the	slope	of	 the	
workload,	and	aims	at	detecting	the	envelope	of	the	workload.	The	designed	controller	adapts	to	
sudden	 load	 changes	 and	 prevents	 premature	 release	 of	 resources,	 reducing	 oscillations	 in	 the	
resource	 provisioning.	 Adapt	 tries	 to	 improve	 the	 performance	 in	 terms	 of	 number	 of	 delayed	
requests,	 and	 the	 average	 number	 of	 queued	 requests,	 at	 the	 cost	 of	 some	 resource	 over-
provisioning.	

Figure	2	shows	the	primary	components	of	the	ElasticPegasus	application.	The	application	can	be	selected	
and	deployed	through	the	SlipStream	browser	interface	or	API.	Running	this	application	with	varying	loads	
show	 that	 the	 autoscaling	mechanisms	work	 as	 expected.	 These	 autoscalers	 showed	 good	 performance	
when	used	for	the	autoscaling	of	workflow	applications.	

	

Figure	2:	Pegasus	Autoscaling	with	SlipStream	

4.4. Multi-Cloud	Support	

The	CYCLONE	platform	easily	integrates	multiple	cloud	service	providers	to	create	a	uniform	interface	to	a	
hybrid	(and	usually	heterogeneous)	cloud.	The	broker’s	“connectors”	act	as	an	abstraction	 layer	between	
the	broker	(SlipStream)	and	the	various	APIs	of	the	cloud	service	providers.	In	this	way,	users	see	a	uniform	
interface	 for	 provisioning	 and	 managing	 cloud	 resources	 independently	 of	 the	 underlying	 cloud	 API.	
SlipStream	 provides	 connectors	 for	 popular	 open-source	 and	 commercial	 cloud	 APIs.	 Table	 1	 lists	 the	
available	 connectors	and	 the	 required	SlipStream	Edition.	 	 The	Community	Edition	 is	 available	under	 the	
Apache	2	license;	the	Enterprise	Edition	requires	purchase	of	a	commercial	license.	

SixSq’s	 commercial	 SlipStream	 service,	 called	 Nuvla,	 is	 the	 broker	 used	 to	 bind	 cloud	 infrastructures	
together	to	create	the	CYCLONE	testbed.	Table	2	shows	the	cloud	infrastructures	that	are	accessible	from	
Nuvla.	Cloud	infrastructures	operated	by	Interoute,	CNRS-LAL,	and	QSC	contribute	officially	to	the	CYCLONE	
testbed.	Project	participants	have	also	used	clouds	operated	by	Amazon,	Exoscale,	and	IFB	to	run	various	
applications	and	to	validate	components	of	the	CYCLONE	platform.	

Worker VM n
Worker VM 2

 Worker VM 1

User

Head VM

HTCondor Central Manager

Pegasus

Autoscaler

Provisioning Controller
+ −

HTCondor Runner

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	18	of	36	

Table	1:	SlipStream	Cloud	Connectors	

	 SlipStream	Edition	

Cloud	API		 Community	 Enterprise	

Amazon	EC2	 � 	�

Azure	 � 	�

Cloudstack	 		 		
Exoscale	 � 	�

Openstack		 		 		
NuvlaBox	 	 		
Open	Telekom	Cloud	(OTC)	 	 		
OpenNebula	 		 	�

SoftLayer	 � 	�

StratusLab	 	� 	�

	

Table	2:	Nuvla	Cloud	Service	Providers	

	 	 	 	 CYCLONE	
Cloud	Service	Provider	 Cloud	API		 Countries	 Regions	 Testbed	

Advania	 Openstack	 SE	 1	 	
Amazon	Web	Services	(AWS)	 EC2	 EU+	 10	 ≈	
Atos	ITER	 StratusLab	 ES	 1	 	
CESNET	 OpenNebula	 	 1	 	
CloudFerro	 Openstack	 	 1	 	
CNRS-LAL	 Openstack		 FR	 1	 		
EBI	Embassy	 Openstack	 	 1	 	
Exoscale	 Exoscale	 CH	 2	 ≈	
IBM	SoftLayer	 SoftLayer	 IT	 1	 	
Institut	Français	Bioinformatique	 Openstack	 FR	 6	 ≈	
Interoute	(IRT)	 Openstack		 IT	 1	 		
Microsoft	Azure	 Azure	 NL	 1	 	
NuvlaBox	 NuvlaBox	 CH,	FR,	IT	 18	 	
Open	Telekom	Cloud	(OTC)	 OTC	 DE	 1	 	
QSC	 Openstack	 DE	 1	 		
SCISSOR	(H2020)	 OpenNebula	 FR,	IT	 3	 	
Tiede	HPC	 OpenNebula	 ES	 1	 	

	

4.5. Features	

The	features	that	have	been	implemented	are:	

• Offer-Based	Provisioning.	The	ability	to	provision	cloud	resources	based	on	specific	service	offers,	
including	characteristics	like	available	resources,	location,	and	quality	of	service.	

• Multi-Cloud	 Deployments.	 Developers	 can	 create	 cloud	 applications	 that	 simultaneously	 use	
resources	from	different	clouds.		

• Scaling.	Allowing	an	application	to	scale	horizontally	(more	or	fewer	machines)	or	vertically	(more	
local	resources)	to	accommodate	a	change	in	load.	

• Horizontal	Scaling.	Adding	or	removing	virtual	machines	from	a	running	cloud	application.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	19	of	36	

• Vertical	Scaling.	Adding	more	resources	(CPU,	RAM,	disk)	to	a	single	virtual	machine.	

• Ranking	by	Cost.	The	ability	 to	 rank	appropriate	service	offers	based	on	 the	approximate	cost	of	
those	resources.	

• Policy	 Constraints.	 The	 possibility	 for	 application	 developers	 to	 define	 policy	 constraints	 for	 an	
application,	for	example,	to	limit	where	an	application	can	be	run.		

• Benchmarking.	Allowing	all	users	of	the	platform	to	publish	benchmark	information	about	service	
offers	within	 the	Service	Catalog,	 to	allow	users	 to	make	better	 choices	 concerning	 the	available	
cloud	resources.	

The	full	provisioning	chain	is	available	to	users,	but	there	are	some	limitations:	

• Extended	 Pre-filtering.	 Allow	 the	 cloud	 pre-filtering	 to	 include	 benchmarking	 criteria	 and	 other	
constraints,	like	the	location	of	required	data	sets.	

• User-Specified	 Ranking.	 Allow	 the	 users	 to	 specify	 their	 own	 ranking	 algorithms	 to	 identify	 the	
most	attractive	offers	from	the	Service	Catalog.	

• Scaling	with	Offers.	Update	the	scaling	process	inside	of	the	deployment	engine	to	use	offers	from	
the	Service	Catalog.	

• Scaling	through	UI.	Extend	the	browser-based	UI	to	allow	scaling	actions	to	be	triggered.	

• Dynamic	 Topology.	 Application	 developers	 must	 describe	 how	 many	 clouds	 will	 be	 used	 in	 an	
application	 in	 its	 definition.	 	 The	 distribution	 of	 components	 over	 clouds	 cannot	 currently	 be	
changed	dynamically.	

All	 these	 limitations	 appear	 in	 the	 SlipStream	 development	 roadmap	 and	 will	 be	 implemented	 in	
accordance	with	user	requirements.		

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	20	of	36	

5. Monitoring	

The	 SlipStream	monitoring	 system	 is	 intended	 to	 provide	 information	 about	 both	 current	 and	 historical	
resource	utilization.	The	existing	 implementation	 (see	Figure	1)	at	 the	start	of	 the	project	was	extremely	
limited.	It	could	not	be	extended	to	resources	other	than	virtual	machines	and	even	for	virtual	machines	it	
was	not	possible	to	associate	the	usage	with	groups	and	roles.	At	the	technical	 level,	the	implementation	
would	also	not	scale	to	a	large	number	of	users.	

For	 these	 reasons,	 the	 system	 was	 redesigned	 and	 re-implemented.	 The	 system	 now	 uses	 a	 separate	
service	to	maintain	the	current	global	state	of	resource	utilization	across	all	clouds.		To	allow	for	historical	
views,	a	snapshot	of	the	current	global	state	is	taken	every	minute.	With	this	new	design,	users	can	obtain	
detailed	reports	of	usage	over	any	time	period	and	filter	the	usage	by	group,	role,	application,	or	any	other	
attribute	of	the	metered	resource.	Because	the	cost	is	added	during	the	snapshot,	approximate	billing	can	
also	be	provided.	

The	 quota	 enforcement	 mechanism	 has	 also	 been	 re-implemented	 to	 rely	 on	 the	 current	 global	 state.		
Because	of	the	generality	of	the	solution,	quotas	can	be	placed	on	any	resource	which	appears	in	the	global	
state.	These	quotas	can	also	be	applied	by	user,	group,	role,	or	other	attributes.	

The	new	implementation	has	just	recently	been	incorporated	into	the	production	version	of	SlipStream,	so	
there	is	not	widespread	use	of	these	new	features:	

• Current	 Usage.	 The	 ability	 to	 see	 a	 “near”	 real	 time	 view	 of	 a	 user’s	 (or	 group’s,	 etc.)	 resource	
utilization.	

• Historical	Usage.	The	ability	to	see	a	user’s	(or	group’s,	etc.)	resource	utilization	over	a	given	time	
period	with	cost	information.	

• Quota.	 The	 ability	 to	 limit	 resource	 utilization	 to	 a	 predefined	 value	 and	 to	 prevent	 further	
resource	allocations	that	would	violate	this	limit.	

All	 of	 these	 features	 are	 available	 through	 the	REST	API,	 but	 have	not	been	 integrated	 into	 SlipStream’s	
browser	interface.		A	command	like:	
curl -X PUT -H 'content-type:application/x-www-form-urlencoded' \
 https://nuv.la/api/metering \
 --data-urlencode '$filter=deployment/user/href="user/'${user_id}'"' \
 -d '$filter=snapshot-time>="2017-10-01T00:00:00.000Z"' \
 -d '$filter=snapshot-time<="2017-10-08T00:00:00.000Z"' \
 -d '$last=0' \
 -d '$aggregation=count:id' \
 -d '$aggregation=sum:price' \
 -d '$aggregation=sum:serviceOffer/resource:vcpu' \
 -d '$aggregation=sum:serviceOffer/resource:ram'

Can	be	used	to	recover	the	resources	used	over	a	period	of	time.		This	command	would	provide	the	total	
number	of	machines	running,	 the	cost,	 total	CPU	 ·	minute,	and	RAM	·	minute	used	over	 the	period	 for	a	
given	user.		

The	foreseen	extensions	of	the	monitoring	features	include:	

• Extended	 Resource	 Coverage.	 Currently	 only	 virtual	 machines	 are	 monitored.	 The	 monitoring	
needs	to	be	extended	to	storage,	networking,	and	other	resources.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	21	of	36	

• User-Defined	Quotas.	Only	the	SlipStream	administrator	can	define	quotas.	Individual	users	should	
be	able	to	define	quotas	for	themselves	and	group	managers	should	be	able	to	do	the	same	for	the	
group	and	for	members	of	the	group.	

As	for	the	other	defined	limitations,	work	to	remove	the	limitations	appears	in	the	SlipStream	roadmap.	

	

	

	

	
Figure	3:	Old	Interface	for	Cloud	Usage	Information	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	22	of	36	

6. Scalability,	Reliability,	and	Usability	

The	 scalability,	 reliability,	 and	 usability	 are	 critical	 characteristics	 for	 any	 production	 service.	 There	 have	
been	a	number	of	improvements	to	SlipStream	in	these	areas	over	the	course	of	the	project.	

To	improve	the	scalability	and	reliability	of	the	SlipStream	platform,	important	changes	have	been	made	to	
the	operations	model:		

• Micro-services.	The	SlipStream	service	deployment	has	shifted	towards	micro-services	to	improve	
its	 performance	and	 resilience.	A	 SlipStream	deployment	now	consists	of	 the	 custom	API	 server,	
the	CIMI	API	 server,	 the	 “Pricing	 and	Ranking	 Service”,	 the	metering	 service,	 and	 the	 “collector”	
(for	maintaining	global	state).		This	allows	a	better	view	of	resource	consumption	within	the	system	
and	more	control	over	the	individual	processes.	

• Redundancy.	 Newer	 micro-services	 within	 the	 SlipStream	 ecosystem	 have	 been	 designed	 to	 be	
“stateless”.	 This	 allows	 for	 easy	 replication	 and	 scaling	 of	 the	 individual	 services,	 which	 in	 turn	
improves	the	overall	reliability	of	the	platform.	

• Distributed	Database.	On	the	backend,	a	distributed	Elasticsearch	deployment	is	used	to	provide	a	
reliable	 database	 for	 the	majority	 of	 the	 SlipStream	 platform.	 	 A	 single	 HSQLDB	 database	 is	 still	
used	 for	 the	 deployment	 and	 module	 resources,	 but	 it	 will	 disappear	 as	 those	 resources	 are	
migrated	towards	CIMI.	

• Reduced	 Polling.	 Foundational	 changes	 have	 been	 made	 that	 will	 allow	 the	 use	 of	 Server	 Sent	
Events	 (SSE)	 when	 interacting	 with	 the	 SlipStream	 services.	 This	 provides	 a	 straightforward	
mechanism	to	avoid	polling	by	clients,	reducing	the	load	on	both	the	client	and	server.		

Changes	have	also	been	made	to	improve	the	usability	of	the	platform	from	the	browser	and	programming	
interfaces:	

• Refactored	Python	API.	The	command	line	interface	(CLI)	for	SlipStream	initially	had	an	internal	API	
for	SlipStream	that	was	not	exposed	to	end	users.		This	internal	API	was	separated	from	the	CLI	and	
improved	 so	 that	 Python	 programmers	 now	 have	 a	 clean,	 native	 interface	 to	 the	 SlipStream	
platform	[SSPY].	

• Libcloud	Driver.	Many	Python	programmers	prefer	to	use	the	Libcloud	API	 [LIBCLOUD]	to	control	
cloud-based	workloads.	 In	 addition	 to	 the	native	 SlipStream	Python	API,	 a	 Libcloud	driver	 is	 also	
available	[SSLC].	

• Clojure(Script)	API.	Newer	services	on	the	SlipStream	platform	are	written	in	Clojure,	a	LISP	dialect	
running	 over	 the	 JVM.	 A	 complete	 Clojure	 API	 is	 available.	 This	 API	 can	 be	 used	 (with	 minimal	
wrapping)	from	Java.	Moreover,	this	API	is	compatible	with	ClojureScript,	allowing	its	use	from	the	
JavaScript	ecosystem.	[SSCLJ]		

In	 addition	 to	 the	 above	 changes,	 significant	work	 has	 been	 done	 to	 replace	 the	 browser	 interface.	 The	
newer	design	relies	heavily	on	mature	JavaScript	technologies	to	provide	an	improved	and	more	responsive	
experience	through	the	browser.	As	this	interface	becomes	more	mature,	it	will	replace	the	older	interface	
that	relies	on	a	mixture	of	client	and	server	side	rendering.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	23	of	36	

7. Summary	

This	 work	 package	 has	 over	 the	 last	 three	 years,	 significantly	 enhanced	 the	 brokering,	 deployment	 and	
management	features	for	multi-cloud	applications	by	extending	SlipStream.	The	use	cases	from	WP3	have	
provided	 guidance	 on	 the	 features	 to	 be	 implemented	 and	 validated	 those	 features	 with	 Nuvla,	 SixSq’s	
production	SlipStream	server	that	is	part	of	CYCLONE’s	testbed.	The	fact	that	Nuvla	was	updated	fortnightly	
with	CYCLONE	updates	is	further	evidence	that	the	developed	features	are	of	production	quality	and	useful	
to	a	wide	diversity	of	users.	

The	 project	 has	 made	 significant	 improvements	 in	 the	 following	 areas:	 application	 curation,	 AAI,	
deployment	&	management,	monitoring,	 and	 scalability,	 reliability,	&	 usability.	 Table	 3	 lists	 the	 features	
that	 were	 implemented	 in	 each	 category.	 	 In	 addition,	 Appendix	 A	 contains	 the	 full	 list	 of	 identified	
requirements,	 their	 states,	and	detailed	commentary.	 	 	Overall,	 there	were	56	 requirements	of	which	33	
(59%)	 were	 fully	 implemented,	 11	 (20%)	 remain	 on	 the	 short-term	 roadmap,	 12	 (21%)	 will	 not	 be	
implemented	for	various	reasons.	

As	 SlipStream	 is	 a	 commercial	 solution	 at	 the	 core	 of	 SixSq’s	 portfolio,	 the	 evolution	 of	 SlipStream	will	
continue	after	the	end	of	CYCLONE.		As	mentioned	above,	11	of	the	requirements	remain	on	the	short-term	
SlipStream	roadmap	and	will	 likely	be	 implemented	 in	 the	next	six	months.	Table	3	also	 lists	 the	primary	
CYCLONE	features	(derived	from	the	requirements)	that	remain	on	the	roadmap.	

One	 large	area	 that	 remains	 to	be	covered	 is	 the	 inclusion	of	data	management.	Experiments	have	been	
conducted	 with	 the	 European	 Space	 Agency	 to	 see	 how	 data	 resources	 can	 be	 defined	 in	 the	 Service	
Catalog	and	with	HNSciCloud	to	understand	how	to	integrate	scientific	data	management	services,	 in	this	
case	Onedata	from	the	Indigo	Data	Grid	project.	

	 	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	24	of	36	

	

Table	3:	Summary	of	Available	and	Planned	Features	

	 Implemented	Features	 Roadmap	

Application	Curation	 Portability	 Services	
Automated	Deployment	 Hierarchical	Applications	
Component	Coordination	 Module	Isolation	
App.	Parameterization	 GitHub	Integration	
Sharing	Applications	 	
Stock	Components	 	

AAI	 Username/Password		 Complete	CIMI	Migration	
API	Key/Secret	 Resource	Segmentation	
GitHub	 	
eduGAIN	 	
Elixir	AAI	 	
Group/Role	Definition	 	
Authorization	by	User	 	
Authz.	by	Role/Group	 	

Deployment	&	Management	 Offer-Based	Provisioning	 Extended	Pre-filtering	
Multi-Cloud	Deployments	 User-Specified	Ranking	
Horizontal	Scaling	 Scaling	with	Offers	
Vertical	Scaling	 Scaling	through	UI	
Ranking	by	Cost	 Dynamic	Topology	
Policy	Constraints	 	

Monitoring	 Benchmarking	 Extended	Resource	Coverage	
Current	Usage	 User-Defined	Quotas	
Historical	Usage	 	
Quota	 	

Scalability,	Reliability	&	Usability	 Python	API	 Continued	Migration	to	Micro-Services	
Libcloud	Driver	 	
Clojure(Script)	API	 	

	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	25	of	36	

References	

	

[D6.1]	 Complex	Application	Description	Specification	
http://www.cyclone-
project.eu/assets/images/deliverables/Complex%20Application%20Description%20Specification.pdf		

[D6.2]	 Specification	of	Interfaces	for	Brokering,	Deployment,	and	Management	
http://www.cyclone-
project.eu/assets/images/deliverables/Specification%20of%20Interfaces%20for%20Brokering,%20De
ployment,%20and%20Management.pdf		

[D6.3]	 Solutions	for	Non-functional	Aspects	of	Cloud	Computing	
http://www.cyclone-project.eu/assets/images/deliverables/Solutions%20for%20Non-
functional%20Aspects%20of%20Cloud%20Computing.pdf		

[ALI12]	 Ahmed	Ali-Eldin,	Johan	Tordsson,	and	Erik	Elmroth.	2012.	An	Adaptive	Hybrid	Elasticity	Controller	for	
Cloud	Infrastructures.	In	IEEE	NOMS.	

[CHI09]	 T.C.	Chieu	and	others.	2009.	Dynamic	Scaling	of	Web	Applications	in	a	Virtualized	Cloud	Computing	
Environment.	In	IEEE	ICEBE.	

[CIMI16]	 Distributed	Management	Task	Force,	Inc.,	Cloud	Infrastructure	Management	Interface	(CIMI)	Model	
and	RESTful	HTTP-based	Protocol,	2016.	
https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf		

[COMANAGE]	 COmanage	
https://www.internet2.edu/products-services/trust-identity/comanage/		

[DFN]	 DFN-Verein	(German	NREN)	
https://www.dfn.de/en/

[EDL17]	 E.	Deelman,	et	al.	“The	future	of	scientific	workflows”.	The	International	Journal	of	High	Performance	
Computing	Applications,	2017.		

[EDUGAIN]	 eduGAIN	
https://www.geant.org/Services/Trust_identity_and_security/Pages/eduGAIN.aspx		

[ELIXIR]	 Elixir	AAI.	
https://www.elixir-europe.org/services/compute/aai		

[EDUGAIN]	 eduGAIN	
https://www.geant.org/Services/Trust_identity_and_security/Pages/eduGAIN.aspx		

[ELIXIR]	 Elixir	AAI.	
https://www.elixir-europe.org/services/compute/aai		

[ILY]	 A.	Ilyushkin,	et	al.	An	Experimental	Performance	Evaluation	of	Autoscaling	Policies	for	Complex	
Workflows.	Proceedings	of	the	8th	ACM/SPEC	on	International	Conference	on	Performance	
Engineering,	2017.	

[LIBCLOUD]	 Apache	Libcloud	
https://libcloud.apache.org/		

[LOC16]	 Locust,	Locust,	2016.		
http://locust.io/		

[NGI16]	 Nginx,	Nginx,	2016.		
https://www.nginx.com/		

[OAUTH]	 OAuth	2.0	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	26	of	36	

https://oauth.net/2/		

[OIDC]	 OpenID	Connect.	
https://openid.net/connect/		

[PEG]	 Pegasus	Workflow	Management	System,	2017.	
https://pegasus.isi.edu/	

[RIES16]	 Riemann,	Riemann,	2016.		
http://riemann.io			
	

[SSLC]	 SlipStream	Libcloud	driver	documentation.	
https://slipstream.github.io/slipstream-libcloud-driver/		

[SSCLJ]	 SlipStream	Clojure(Script)	documentation.	
https://slipstream.github.com/SlipStreamClojureAPI		

[SSPY]	 SlipStream	Python	API	documentation.	
https://slipstream.github.io/SlipStreamPythonAPI/		

[SSDOC]	 SlipStream	documentation.	
http://ssdocs.sixsq.com		

[SSAPI]	 SlipStream	API	documentation.	
http://ssapi.sixsq.com		

[SWITCH]	 SWITCH	(Swiss	NREN)	
https://www.switch.ch/		

	 	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	27	of	36	

Glossary	

AAI	 Authentication	and	Authorization	Infrastructure	
ACL	 Access	Control	List	
API	 Application	Programming	Interface	
CIMI	 Cloud	Infrastructure	Management	Interface	
CLI	 Command	Line	Interface	
CSP	 Cloud	Service	Provider	
DAG	 Directed	Acyclic	Graph	
IaaS	 Infrastructure-as-a-Service	
JVM	 Java	Virtual	Machine	
NREN	 National	Research	and	Education	Networking	organization	
OIDC	 OpenID	Connect	
PaaS	 Platform-as-a-Service	
SaaS	 Software-as-a-Service	
SAML	 Security	Assertion	Markup	Language	
SP	 Service	Provider	
SSE	 Server	Sent	Events	
WP	 Work	Package	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	28	of	36	

	

Appendix	A 	Requirements	

This	appendix	collects	 the	requirements	defined	 in	 the	previous	WP6	deliverables	and	provides	a	summary	of	 the	current	 implementation	status.	Those	
requirements	marked	with	a	checkmark	(�)	are	fully	implemented;	those	with	approximately	equal	sign	(≈)	indicate	requirements	that	are	planned	to	be	
implemented	in	the	short	term	or	have	been	implemented	in	an	alternate	way;	and	those	with	a	cross	(�)	indicate	those	that	have	not	been	implemented.	
Detailed	comments	on	the	status	are	provided	for	all	of	the	requirements.		A	summary	of	the	overall	implementation	status	is	provided	in	main	text	of	this	
document.	

	

Table	4:	Implementation	Status	of	Requirements	

	 No.	of	Requirements	 Percentage	of	Requirements	
Fully	implemented	(�)	 33	 59%	
Planned	or	alternate	implementation	(≈)	 12	 21%	
Not	implemented	(�)	 11	 20%	
TOTAL	 56	 100%	

	 	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	29	of	36	

	

Table	5:	Collected	Requirements	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.1	 1	 �	 Machine	

readability	
MUST	 The	application	descriptions	will	be	processed	

primarily	by	the	CYCLONE	components.		The	
chosen	format	MUST	be	easily	readable	by	
machine	from	a	wide	variety	of	different	
programming	languages.		

The	application	descriptions	are	not	yet	managed	via	the	CIMI	
interface	and	consequently	are	still	exposed	programmatically	
in	XML.	The	XML	is	machine	readable	with	a	consistent	
schema.	Because	these	resources	are	used	nearly	exclusively	
by	the	micro-services	and	clients	within	the	SlipStream	
ecosystem,	the	portability	of	this	application	is	not	a	major	
concern.		

D6.1	 2	 �	 Human	
readability	

SHOULD	 Application	developers	may	need	to	read	or	to	
create	the	descriptions	directly	for	debugging,	
testing,	or	development	of	tooling.		The	chosen	
format	SHOULD	be	easily	readable	by	humans.	

As	the	application	description	is	still	in	XML,	it	is	not	friendly	for	
human	processing.	When	these	descriptions	migrate	to	CIMI,	
the	JSON	representation	will	be	much	more	accessible	to	
humans.	Migrating	these	resources	is	in	the	SlipStream	
roadmap	but	they	will	be	the	last	to	be	migrated.	

D6.1	 3	 �	 Easily	
understandable	

SHOULD	 The	application	descriptions	SHOULD	be	easily	
understandable	by	humans,	meaning	that	the	
schema	should	have	limited	complexity	and	be	
well	documented	(e.g.	with	tutorials,	examples,	
APIs,	specifications,	etc.).	

As	the	application	description	is	still	in	XML,	it	is	not	easy	for	
humans	to	understand.	Once	these	resources	are	migrated	to	
CIMI	(and	JSON	format),	they	will	be	easier	for	humans	to	work	
with	directly.	Migrating	these	resources	is	in	the	SlipStream	
roadmap	but	they	will	be	the	last	to	be	migrated.	

D6.1	 4	 ≈	 Extensible	 MUST	 The	application	deployment	format	MUST	be	
extensible	to	allow	for	characteristics	or	features	
specific	to	CYCLONE	components.		

The	format	is	extensible	but	requires	supporting	modifications	
within	the	SlipStream	servers	and	clients	for	each	change.	
Some	CYCLONE	enhancements	have	been	added	to	the	
descriptions	over	the	course	of	the	project.	The	extensibility	
will	be	greatly	improved	once	the	full	migration	to	CIMI	is	
complete.	

D6.1	 5	 �	 Maturity	 SHOULD	 The	application	deployment	format	SHOULD	
have	production	adoption	within	the	wider	IT	
community,	demonstrating	that	it	is	appropriate	
for	general	adoption.			

The	mature	SlipStream	application	description	format	has	been	
in	production	use	for	more	than	3	years.		The	CIMI	translation	
of	the	application	description	will	contain	the	same	
information	but	be	easier	to	process	and	for	human	readability	
(being	based	on	JSON	rather	than	XML).	

D6.1	 6	 �	 Application	
summary	

MUST	 The	description	format	MUST	allow	the	
application	developer	to	provide	a	detailed,	
human-readable	summary	of	the	application’s	
features,	characteristics,	and	limitations.	

The	application	description	format	allows	the	developer	to	
provide	detailed	metadata	concerning	the	component	or	
application.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	30	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.1	 7	 �	 Single	machine	

apps.	
MUST	 Many	applications	and	services	can	be	contained	

within	a	single	virtual	machine.		The	description	
format	MUST	be	able	to	describe	simple,	single-
VM	applications.	

For	SlipStream,	a	single	VM	application	or	service	is	called	a	
“component”.		These	components	can	be	fully	described	by	
developers	and	easily	deployed	by	operators	or	end	users.	

D6.1	 8	 �	 Multiple	
machine	apps.	

MUST	 Many	applications	require	a	number	of	different	
services	deployed	on	different	virtual	machines.		
The	description	format	MUST	be	able	to	describe	
applications	composed	of	multiple	machines.	

For	SlipStream,	a	multi-machine	cloud	application	is	called	an	
“application”	and	is	composed	of	SlipStream	“components”.	
SlipStream	handles	the	coordination	between	the	constituent	
components	and	allows	the	full	application	to	be	managed	as	a	
whole.	

D6.1	 9	 �	 Hierarchical	
composition	

SHOULD	 Complex	applications	are	often	built	from	
reusable	components	that	are	themselves	
complex,	multi-machine	services.		The	
description	format	SHOULD	allow	a	hierarchical	
composition	of	components	to	foster	reuse	of	
descriptions,	minimizing	developer	effort.	

This	is	not	currently	supported	but	is	an	important	component	
of	the	SlipStream	roadmap.	The	implementation	of	this	is	
pending	because	of	a	dependency	on	the	move	of	the	
“deployment”	resource	to	the	SlipStream	CIMI	server.		This	
“deployment”	migration	is	expected	to	happen	at	the	end	of	
2017	and	will	unblock	the	implementation	of	this	feature.	

D6.1	 10	 �	 Virtual	machines	 MUST	 The	description	format	MUST	be	able	to	describe	
the	all	of	the	parameters	for	the	provisioning	of	
virtual	machines	on	a	cloud	infrastructure.	

The	description	allows	the	developer	to	provide	the	resource	
requirements	of	a	virtual	machine,	including	CPU,	RAM,	and	
disk.	With	the	shift	to	provisioning	based	on	service	offers,	all	
characteristics	of	a	resource	(location,	price,	etc.)	can	be	used	
for	resource	selection.	

D6.1	 11	 ≈	 Containers	 SHOULD	 Use	of	(Linux)	containers	is	becoming	more	
widespread	as	an	alternative	to	full	virtual	
machines.		The	description	format	SHOULD	be	
able	to	describe	all	of	the	parameters	for	the	
provisioning	of	a	container.	

A	number	of	SlipStream	components	and	applications	have	
been	provided	in	the	App	Store	that	allow	use	of	containers,	
including	Docker,	Docker	Compose,	Docker	Swarm,	
Kubernetes,	and	Mesos.	Further	integration	of	containers	into	
SlipStream’s	cloud	application	management	is	planned	but	not	
yet	available.	

D6.1	 12	 �	 CPU	
specification	

MUST	 The	description	format	MUST	allow	the	
application	developer	(or	user)	to	define	the	
characteristics	of	the	CPU(s)	required.	

The	minimum	number	of	vCPUs	for	a	component	can	be	
defined.	

D6.1	 13	 �	 RAM	
specification	

MUST	 The	description	format	MUST	allow	the	
application	developer	(or	user)	to	define	the	
amount	of	RAM	required.	

The	minimum	RAM	required	for	a	component	can	be	defined.	

D6.1	 14	 �	 Disk	
specification	

MUST	 The	description	format	MUST	allow	the	
application	developer	(or	user)	to	define	the	
amount	of	disk	space	available	on	the	
application’s	virtual	machines.	

The	minimum	disk	space	required	for	a	component	can	be	
defined,	on	the	cloud	platforms	that	support	this.	In	addition,	
users	can	specify	“extra	disks”	when	the	underlying	cloud	
allows	additional	disks	to	be	allocated.	

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	31	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.1	 15	 ≈	 Persistent	

storage	
MAY	 The	description	format	MAY	allow	the	

application	developer	(or	user)	to	specify	the	
characteristics	of	persistent	storage	(type,	
amount,	location,	etc.).	

Management	of	storage	resources	is	not	integrated	into	
SlipStream.	However,	Onedata	services	(from	the	Indigo	Data	
Cloud	project)	are	available	from	the	App	Store.		This	allows	
users	to	create	their	own	data	management	platform	and	
control	it	through	SlipStream.	

D6.1	 16	 �	 Multi-cloud	 SHOULD	 The	description	format	SHOULD	allow	the	
application	developer	to	indicate	which	parts	of	
an	application	can	be	deployed	on	different	cloud	
infrastructures.	

The	SlipStream	application	description	format	and	provisioning	
system	fully	support	multi-cloud	applications.	

D6.1	 17	 �	 Placement	
policies	

MAY	 The	description	format	MAY	allow	the	
application	developer	(or	user)	to	specify	policies	
for	the	placement	of	application	components.	

Developers	can	specify	placement	policies	on	individual	
components	that	identify	appropriate	service	offers.	The	
policies	are	defined	in	the	rich	CIMI	filtering	language	and	can	
use	any	characteristics	defined	in	the	service	offers.	

D6.1	 18	 ≈	 Network	
connectivity	

MUST	 The	description	format	MUST	allow	the	
application	developer	to	define	the	network	
connectivity	between	application	components	
and	between	the	user	and	the	application.		This	
concerns	the	accessibility	of	ports	on	the	
application’s	VMs.	

The	CYCLONE	networking	features	are	delivered	through	the	
CNSMO	component	that	is	available	from	the	SlipStream	App	
Store.	The	connectivity	(firewall)	is	defined	through	the	CNSMO	
component	parameters.	

D6.1	 19	 ≈	 Network	
isolation	

SHOULD	 The	description	format	SHOULD	allow	the	
application	developer	to	specify	the	
characteristics	of	isolated	network(s)	to	be	
created	for	a	given	application.		This	network	
isolation	MAY	be	extended	to	machines	outside	
of	the	application,	such	as	a	user’s	workstation.	

The	CYCLONE	networking	features	are	delivered	through	the	
CNSMO	component	that	is	available	from	the	SlipStream	App	
Store.	The	network	isolation	(VPN)	is	defined	through	the	
CNSMO	component	parameters.	

D6.1	 20	 �	 Parameterization	 MAY	 The	description	format	MAY	allow	an	application	
or	application	component	to	be	parameterized,	
allowing	information	to	be	passed	into	or	out	of	
an	application	at	deployment	or	runtime.	

A	SlipStream	component	can	be	parameterized	with	input	and	
output	parameters.	Developers	can	wire	parameters	from	
different	components	together	when	defining	a	SlipStream	
application.	

D6.1	 21	 �	 Metrics	 SHOULD	 The	description	format	SHOULD	allow	the	
application	developer	(or	user)	to	specify	what	
standard	metrics	(e.g.	CPU	load	or	RAM	
utilization)	should	be	collected	along	with	their	
frequency.	

Because	the	metrics	and	the	performance	trade-offs	vary	
greatly	between	applications,	metrics	collection	has	not	been	
integrated	directly	into	the	SlipStream	deployment	and	
application	management	processes.	Instead	examples	have	
been	provided	to	show	how	application	developers	can	
implement	metric	collection,	analysis,	and	actions	using	
SlipStream.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	32	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.1	 22	 �	 Dynamic	metrics	 MAY	 The	description	format	MAY	allow	the	

application	developer	(or	user)	to	modify	the	
collected	metrics	while	the	application	is	running.	

See	comment	for	D6.1/21.	

D6.1	 23	 �	 External	services	 SHOULD	 The	description	format	SHOULD	allow	the	
application	developer	(or	user)	specify	outside	
services	to	be	used	in	conjunction	with	a	
deployed	application	(for	example,	external	
authentication	databases	for	single	sign-on).	

See	comment	for	D6.1/21.	

D6.1	 24	 �	 Actions	 MAY	 The	description	format	MAY	allow	actions	to	be	
taken	in	response	to	the	values	of	collected	
metrics	or	provided	key	performance	indicators	
(KPIs)	to	be	defined.	

See	comment	for	D6.1/21.	

D6.1	 25	 �	 SLA	 MAY	 The	description	format	MAY	allow	service-level	
agreements	to	be	defined	as	constraints	on	
service	placement	and/or	triggers	to	defined	
actions.	

See	comment	for	D6.1/21.	

D6.1	 26	 �	 Credentials	 MUST	 The	description	format	MUST	be	able	to	provide	
credentials	for	configuring	access	to	deployed	
application	services	(e.g.	SSH	public	keys	for	
remote	shell	access).	

The	description	format	can	specify	what	SSH	keys	should	be	
used	for	an	application	deployment.		SlipStream	now	provides	
a	general	credential	resource	that	supports	SSH	Keys	and	API	
keys/secrets	and	can	be	extended	to	other	credentials	in	the	
future.		The	application	description	format	and	the	user	
resource	are	being	extended	to	include	references	to	these	
credentials.	

D6.1	 27	 �	 Tooling	 SHOULD	 Tooling	(e.g.	IDE)	that	facilitates	the	creation	and	
use	of	the	application	descriptions	WOULD	be	
advantageous.	

SlipStream	itself	provides	good	tooling	for	creating	the	
application	descriptions.		

D6.1	 28	 �	 Lifecycle	actions	 MUST	 The	description	format	MUST	allow	the	cloud	
application	developer	to	define	actions	
associated	with	state	transitions	in	the	
application	lifecycle.	

Application	developers	can	define	actions	for	any	of	the	cloud	
application	lifecycle	state	transitions.	

D6.1	 29	 �	 Execution	
environment	

MUST	 The	application	model	and	description	MUST	not	
impose	constraints	on	the	execution	
environment	of	the	application,	for	example,	by	
excluding	the	use	of	certain	operating	systems	
(e.g.	Windows).	

The	tools	used	to	control	resources	from	SlipStream	are	
written	to	be	as	lightweight	and	portable	as	possible.	All	Linux	
and	Windows	platforms	are	supported.	Other	platforms,	if	
required,	may	require	small	adaptations	of	the	SlipStream	
integration	tools.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	33	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.2	 1	 �	 Machine	

Readable	Service	
Description	
Format	

MUST	 CYCLONE	consists	of	a	set	of	interoperating	tools	
that	will	produce	and	process	the	service	
descriptions.	Consequently,	the	format	MUST	be	
a	standard	format	(XML,	JSON,	etc.)	that	can	be	
easily	processed	in	a	wide	variety	of	
programming	languages.	

The	service	descriptions	(“service	offers”)	are	provided	in	JSON	
format.	The	documents	can	be	consumed	directly	or	via	one	of	
the	supported	programming	APIs—Clojure	(Java),	ClojureScript	
(JavaScript),	and	Python.	The	syntax	of	the	descriptions	is	
essentially	a	key/value	format,	where	the	keys	are	namespaced	
to	avoid	collisions.			

D6.2	 2	 �	 Human	Readable	
Service	
Description	
Format	

SHOULD	 Humans	will	need	to	read	the	service	
descriptions	to	understand	provider	offerings	
and	to	prepare	appropriate	queries	(policies).	
The	service	description	format	SHOULD	be	easily	
readable	by	humans.	

The	service	offers	are	extensible	key/value	pairs	provided	in	
JSON	format.	In	addition,	supporting	resources	that	provide	
information	about	key	namespaces	and	semantic	information	
about	each	key	are	provided.		These	also	use	a	JSON	format.	

D6.2	 3	 ≈	 Endorsement	
Format	

MUST	 The	format	used	for	service	endorsements	(e.g.	
certifications,	availability	metrics,	etc.)	MUST	be	
the	same	format	as	the	service	description	
format.		

Separate	endorsement	resources	have	not	been	provided	as	
these	have	not	been	required	by	the	users	to	date.	These	will	
likely	be	added	as	part	of	another	H2020	project	(EU-SEC).	
However,	a	Benchmark	resource	that	permits	users	to	provide	
performance	information	about	service	offers	has	been	added.	

D6.2	 4	 �	 Machine	
Readable	Service	
Query	Format	

MAY	 The	service	query	format	(policy)	may	be	created	
or	altered	by	the	CYCLONE	tools.	The	policy	
format	MAY	be	easily	readable	from	a	wide	
variety	of	programming	languages,	either	it	can	
be	a	well-supported	standard	or	written	
according	to	a	well-defined	grammar.	

The	query	language	used	for	the	service	catalog	(and	indeed	all	
CIMI-based	resources)	is	the	CIMI	filtering	language.	The	
grammar	is	defined	in	the	CIMI	API	specification.		

D6.2	 5	 �	 Human	Readable	
Service	Query	
Format	

MUST	 Humans	as	well	as	tools	will	be	creating	the	
service	queries	(policies),	so	the	format	and	
grammar	MUST	be	easily	readable	by	humans.	

The	filtering	language	defined	in	the	CIMI	specification	was	
designed	to	be	easily	used	by	humans.	The	syntax	is	quite	
natural	for	anyone	who	has	programmed	or	used	a	database.			

D6.2	 6	 �	 Flexible	Service	
Description	
Schema	

MUST	 The	characteristics	of	the	underlying	cloud	
services	may	vary	from	service	to	service	(e.g.	
one	based	on	virtual	machines	and	another	
based	on	containers)	and	over	time	as	new	
services	appear.	Consequently,	the	schema	of	the	
service	description	MUST	be	flexible.		

The	schema	of	the	service	offers	(and	benchmarks)	is	an	open	
collection	of	key/value	pairs.	Any	appropriate	attributes	can	be	
added	to	the	service	offers.	The	only	requirement	is	that	the	
attribute	namespace(s)	must	be	registered	with	SlipStream	to	
avoid	collisions.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	34	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.2	 7	 �	 Graceful	

Handling	of	
Missing	or	
Incorrect	
Information	

MUST	 For	many	reasons	(e.g.	a	field	isn’t	appropriate	
for	a	service,	a	tool/human	creates	an	erroneous	
entry),	the	service	descriptions	may	not	contain	
information	expected	by	a	particular	query	or	
may	have	provided	the	information	in	an	
incompatible	format	(e.g.	string	instead	of	an	
integer).	The	matchmaking	process	MUST	
respond	to	malformed	queries/descriptions	in	a	
well-defined	manner	and	MUST	accept	them	
without	crashing.		

The	implementation	will	ignore	missing	information	or	
incorrect	information.		In	addition,	the	implementation	extends	
the	CIMI	filtering	language	to	allow	users	to	search	for	service	
offers	that	do	not	define	a	particular	key	(through	support	of	a	
“null”	value).		

D6.2	 8	 ≈	 Join	Service	
Descriptions	and	
Endorsements	

MUST	 For	matching	on	non-functional	characteristics,	
the	query	language	MUST	be	able	to	join	
information	from	service	descriptions	and	from	
third-party	endorsements.	

The	ability	to	perform	a	“join”	between	all	documents	within	
the	service	catalog	was	impossible	to	implement	while	
maintaining	good	general	query	performance.	Consequently,	
the	join	will	be	implemented	as	a	staged	selection	process	
instead.		A	pre-filtering	stage	will	eliminate	offers	that	do	not	
conform	to	performance,	security,	or	other	user-level	
requirements.		This	will	then	be	followed	by	the	filtering	of	
offers	based	on	application	requirements.	

D6.2	 9	 �	 Ordering	of	
Results	

SHOULD	 A	particular	service	query	may	return	more	than	
one	that	matches	the	given	requirements.	The	
query	language	SHOULD	allow	multiple	matches	
to	be	ranked	or	ordered.	This	allows	user	
preferences	to	be	taken	into	account.	

The	results	of	any	query	can	be	ordered	(ascending	or	
descending)	by	the	value(s)	of	any	key(s)	in	the	service	offer.		

D6.2	 10	 �	 Logical	
Operations	

MUST	 The	query	language	MUST	support	logical	AND	
and	OR	operations.	Additional	logical	operations	
(e.g.	XOR)	MAY	also	be	supported.	

The	query	language	supports	both	AND	and	OR	logical	
operations.	

D6.2	 11	 ≈	 Arithmetic	
Operations	

MUST	 The	query	language	MUST	support	basic	
arithmetic	operations	(add,	subtract,	multiply,	
divide)	for	integer	and	floating	values.	Other	
arithmetic	operations	MAY	also	be	supported.	

The	query	language	supports	relational	operations	on	integer,	
string,	and	date	values.	Extensions	to	the	CIMI	filtering	
language	also	allow	aggregations	(sums,	averages,	statistics,	
etc.)	to	be	performed	over	a	set	of	service	offers.	General	
arithmetic	operations	haven’t	been	requested	by	the	current	
users.	

D6.2	 12	 �	 String	Matching	 MUST	 The	query	language	MUST	support	string	equality	
and	inequality	operations.	

Both	equality	and	inequality	of	strings	are	supported.		In	
addition,	a	“starts-with”	(^=)	operator	has	been	provided.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	35	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.2	 13	 �	 String	Regular	

Expressions	
SHOULD	 The	query	language	SHOULD	support	string	

matching	based	on	regular	expressions.	
String	matching	based	on	“globbing”	would	be	fairly	
straightforward	to	implement;	full	regular	expression	support	
would	be	difficult.	In	any	case,	this	functionality	has	not	been	
required	by	current	users.		

D6.2	 14	 ≈	 Array	Operations	 SHOULD	 The	query	language	SHOULD	support	array	
operations,	for	example,	be	able	to	define	filters	
on	the	inclusion	and	exclusion	of	values	within	an	
array.	

This	feature	has	not	been	requested	by	current	users	and	is	not	
provided.		However,	all	CIMI	resources	allow	users	to	define	a	
set	of	properties	(key/value	pairs)	that	can	be	used	to	tag	
resources.		Searching	for	documents	with	certain	properties	is	
fully	supported	by	the	CIMI	filtering	syntax	and	the	current	
SlipStream	implementation.	

D6.2	 15	 �	 Service	Level	
Agreement	

MUST	 The	brokering	implementations	must	facilitate	
the	exchange	of	Service	Level	Agreements	in	
standard	or	customary	formats.	

The	implementation	does	not	directly	support	the	import	or	
export	of	SlipStream	placement	policies	or	offers	as	Service	
Level	Agreements.	

D6.3	 1	 �	 Scaling	on	Load	 MUST	 Triggering	of	scaling	actions	of	an	application	
based	on	application	metrics	using	simple,	
predefined	algorithms	(e.g.	adding	node	based	
on	machine	load).	

The	SlipStream	API	allows	both	horizontal	(e.g.	another	
database	node)	and	vertical	(e.g.	more	RAM)	scaling	actions.	
These	actions	can	be	triggered	by	users	or	by	applications.	An	
example	auto-scaling	application	is	provided	in	the	App	Store	
that	demonstrates	how	this	can	be	accomplished.	

D6.3	 2	 �	 Scaling	on	
Application	
Metric	

MUST	 Triggering	of	scaling	actions	of	an	application	
based	on	application	metrics	defined	by	the	
developer	of	the	application.	

See	comment	for	D6.3/1.		

D6.3	 3	 �	 Publishing	
Benchmarks	

MUST	 Ability	to	publish	application-specific	benchmarks	
of	cloud	providers	into	the	Service	Catalog	or	
Open	Service	Compendium.	

A	Benchmark	resource	that	permits	users	to	provide	
performance	information	about	service	offers	has	been	added.	

D6.3	 4	 �	 Static	Placement	 MUST	 Placement	based	on	static	characteristics	(e.g.	
geographical	location)	of	a	cloud	service	
provider.	

Application	developers	can	specify	placement	policies	based	on	
the	characteristics	in	a	service	offer.	

D6.3	 5	 ≈	 Dynamic	
Placement	

SHOULD	 Placement	based	on	dynamic	VM	monitoring	
information	from	SlipStream	itself.	

See	comment	for	D6.2/8.	This	dynamic	information	(e.g.	
availability)	will	eventually	be	provided	as	benchmarking	(or	
similar)	resources.	

D6.3	 6	 �	 Placement	with	
External	
Information	

MUST	 Placement	based	on	external	information	pushed	
into	the	SlipStream	Service	Catalog	or	Open	
Service	Compendium.	

The	information	for	service	offers	can	be	gathered	from	any	
source,	including	external	ones.	Once	available	in	a	service	
offer,	the	standard	query/filtering	mechanisms	are	available	to	
users.	

D6.3	 7	 ≈	 Joined	
Placement	

SHOULD	 Placement	based	on	the	join	of	all	information	
associated	with	a�given	cloud	service	provider.	

See	comment	for	D6.2/8.		

H2020-ICT-644925	–	CYCLONE	
D6.4:	Summary	of	Provided	Brokering,	Deployment,	and	Management	Features	

	
	

CYCLONE_D6.4_feature_summary-v1.1.docx	 Page	36	of	36	

Doc.	 ID	 	 Title	 Level	 Description	 Comment	
D6.3	 8	 �	 Price	Ranking	 MUST	 Ranking	of	selected	cloud	service	providers	based	

on	predefined�algorithms	(e.g.	price).	
SlipStream	already	ranks	selected	service	offers	based	on	the	
calculated	price	(for	service	offers	with	price	information).		

D6.3	 9	 �	 User-Defined	
Ranking	

SHOULD	 Ranking	based	on	algorithms	provided	by	the	
application	developer	and/or	the	application	
operator.	

This	feature	is	not	scheduled	in	the	SlipStream	roadmap.	

D6.3	 10	 �	 Notifications	 SHOULD	 Ability	to	trigger	notifications/alerts	through	
SlipStream.	

This	feature	is	planned	but	considered	low	priority.	This	will	
probably	be	made	available	near	the	end	of	2017.	

D6.3	 11	 �	 Auto-scaling	 MUST	 Ability	to	trigger	scaling	actions	from	within	the	
application.	

An	example	auto-scaling	application	has	been	provided	in	the	
Nuvla	App	Store.	This	shows	how	to	collect	and	analyze	
application-defined	metrics	and	then	to	perform	scaling	actions	
based	on	those	metrics.	

D6.3	 12	 �	 Service	Offer	
Search	

MUST	 Ability	to	search	the	Service	Catalog	and	Open	
Service	Compendium	manually	to	see	the	results	
from	various	policies	and	to	ideally	then	
associate	those	policies	with	applications.	

Searching	the	catalog	of	service	offers	is	fully	supported	
through	the	SlipStream	CIMI	API.	In	addition,	a	prototype	web-
based	UI	has	been	developed.	The	prototype	is	available	on	
Nuvla,	although	not	yet	a	fully-supported,	official	feature.	

	

